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Abstract
We study short-range ferromagnetic models residing on planar manifolds with
global negative curvature. We show that the local metric properties of the
embedding surface induce droplet formation from the boundary, resulting in
the stability of a Griffiths phase at a temperature lower than that of the bulk
transition. We propose that this behaviour is independent of order parameter
and hyperlattice specifics, and thus is universal for such non-Euclidean spin
models. Their temperature–curvature phase diagrams are characterized by two
distinct bulk and boundary transitions; each has mean-field critical behaviour
and a finite correlation length related to the curvature of the embedding surface.
The implications for experiments on superconducting hyperlattice networks are
also discussed.

PACS numbers: 7510, 0520, 0545, 0550

1. Introduction

Disordered spin systems behave in ways qualitatively distinct from their periodic
counterparts [1–3]. More specifically, they display broad relaxation spectra, in clear contrast
to the Debye relaxation observed for spin crystalline materials. Relaxation times depend on
local conditions, and thus it is not surprising that randomly coupled spins relax on a wide
distribution of timescales. There are now several anomalous magnetic materials [4–6], whose
non-Debye relaxation seems to be determined by lattice topology [7] rather than by disorder.
The theoretical challenge is to identify and characterize regular reductionist models that exhibit
such behaviour in the absence of intrinsic randomness.

There are several analytic studies of periodic glass models [8], though their infinite-range
nature makes their relevance to real materials unclear. More specifically, the absence of
any length scale in these approaches implies relaxation on just a few timescales. Detailed
analytic methods to treat short-range glasses, even with intrinsic disorder, remain to be
found. It has been proposed that their slow dynamics result from rare, locally ordered spatial
regions that are energetically probable due to random spin–spin couplings [9, 10], similar
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to the situation associated with Griffiths phases [11, 12] in diluted ferromagnets; here large
fluctuating droplets lead to relaxation on long timescales. Though the application of this
droplet scenario to experimental spin glasses remains controversial [13], it is an appealing
starting point for geometrically induced glassiness. In quenched ferromagnets, the random
initial configuration approaches equilibrium via domain wall motion [14]. This coarsening
occurs more slowly when the boundaries are pinned by impurities, as is the case in the
random-field Ising model [15]. Thus one can ask whether local geometry can induce such
slow domain wall dynamics for a short-range ferromagnetic model. Self-similar lattices are
excellent candidates, since all minority droplets will be non-compact [16]; indeed non-trivial
slow relaxation has been reported in this case [17, 18]. It is therefore natural to continue this
program by studying ferromagnets on lattices embedded in surfaces with constant negative
curvature. Dynamics on such hyperbolic manifolds, particularly in the area of chaos [19, 20],
are known to be qualitatively similar to those observed in disordered systems [21] and thus
such surfaces provide promising settings for the identification of broad relaxation spectra in
disorder-free models.

In this paper we show that regular ferromagnetic models on hyperlattices with open
boundary conditions exhibit slow dynamics on a distribution of timescales in the absence of
intrinsic randomness. Their metric structure makes it energetically probable for large domains
of minority spins to nucleate at the boundaries, leading to the stability of a Griffiths phase
at a temperature lower than the bulk temperature. In dilute ferromagnets with correlated
disorder, the presence of such rare droplets leads to a diverging magnetic susceptibility [24],
a phenomenon that we also observe for the regular hyperlattice models. We attribute this
behaviour to the distinction between bulk and boundary sites, where the latter comprise a
significant proportion of the total site number. Two mean-field transitions are identified,
associated with the bulk and the boundary respectively, whose characters are determined by
local metric properties; for example the correlation length associated with each transition is
related to the curvature of the embedding surface. We conjecture that this phase behaviour
is universal for all short-range ferromagnetic models residing on lattices embedded on
hyperbolic planes, independent of details associated with the spin order parameter or lattice
specifications.

The outline of this paper is as follows. In the next section (section 2) we discuss geometrical
properties of lattices embedded in surfaces of negative curvature. The model and its specific
heat are presented in section 3. The Bethe–Peierls transition for the central spin, that which is
deepest in the hyperlattice, is derived in section 4. This analysis is generalized in section 5 to
an arbitrary lattice site. Analysis of magnetization distributions is presented in section 6, with
particular emphasis on the inferred slow dynamics. In section 7, we summarize our results
with a conjectured phase diagram for these models in the curvature–temperature plane and
discuss possible experiments on Josephson junction arrays. In order to maintain the flow of
the text, we have delegated the derivation of the main analytical results to appendices.

2. Hyperlattices: regular lattices on a hyperboloid

Infinite regular lattices are characterized by two integers (p, q), where p is the number of
polygon edges and q is the number of polygons around a given vertex. On an Euclidean plane
(i.e. no curvature), there are three tilings corresponding to (p − 2)(q − 2) = 4: the square (4,
4), the triangular (3, 6) and the honeycomb (6, 3) lattices. On the sphere S2 (positive curvature)
the five platonic polyhedra correspond to the condition (p − 2)(q − 2) < 4: the tetrahedron
(3, 3), the cube (4, 3), the octahedron (3, 4), the dodecahedron (5, 3) and the icosahedron (3,
5). Hyperlattices, tilings of the hyperbolic plane with negative curvature, correspond to the
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Figure 1. The site-centred (3, 7) hyperlattice with three generations.

condition (p − 2)(q − 2) > 4; clearly there exist an infinite number of possibilities. The
site-centred (3, 7) hyperlattice is shown in figure 1.

Loopless trees, such as Bethe lattices, correspond to regular tilings of the hyperbolic
plane labelled by the integers (∞, q) [25, 26]. Hyperlattices can be built in a shell structure,
where each layer is analogous to a generation of a tree. For a hyperlattice of n shells, the

number of boundary sites, δVn, scales with the number of bulk sites, Vn; since δVn ∼ V
1− 1

D
n

for a Euclidean tiling in D dimensions, the hyperlattices are considered to have D = ∞.
However they possess intrinsic length scales determined by their radii of curvature, a feature
that influences the critical behaviour of models residing on these surfaces [27].

It is useful to study the continuous-space analogue of the hyperlattice, represented as a
unit disc on the Lobachevskii plane with a metric

g(z) = 1

(1 − |z|2)2
(1)

where z = x + iy is a point on the disc. A finite-size system is obtained by restricting z to
the disc |z| < R < 1. The minimum-length paths, e.g. the geodesics, between two points at
coordinates z1 and z2 are circles perpendicular to the unit circle. The distance between z1 and
z2 is

d(z1, z2) = tanh−1

∣∣∣∣ z1 − z2

1 − z1z2

∣∣∣∣. (2)

In order to illustrate the phenomenology associated with different curvatures, we determine
the short-scale corrections to the perimeter of a circle, L, of radiusd for the negative and positive
cases. First we consider the circle embedded on a two-dimensional sphere where its perimeter
is decreased by the presence of a positive curvature R:

LS2 = 2πd − π

3R2
d3 + · · · . (3)

We can perform an analogous expansion for the case of the hyperbolic plane with the metric
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equation (1). The set of points at a fixed distance d from a given point X (chosen on the real
axis) is found to be represented by the circle z = x0 + R0 exp (iφ), with

x0 = X
1 − tanh2 d

1 − X2 tanh2 d
and R0 = (1 − X2)

tanh d

1 − X2 tanh2 d
. (4)

The periphery of the circle z = x0 + R0 exp (iφ) is

Lbulk =
∫ 2π

0

√
g(z)R0 dφ = π sinh (2d) (5)

so that a short-scale expansion to order d3 leads to

Lbulk = 2πd +
4π

3
d3 + · · · . (6)

Comparing equation (6) with (3), we see that the perimeter of a circle of radius d is larger
(smaller) than 2πd on a surface with a negative (positive) curvature. Identifying the corrections
to 2πd, we see that the curvature associated with the metric equation (1) is R = −1/2. On
large length scales, the sphere is compact; there are no more points at a distance larger than a
critical value. By contrast, on the manifold with negative curvature, the number of points at a
distance d from a given point increases exponentially with d above the curvature radius:

Lbulk ∼ π

2
exp (2d) (7)

which is obtained from equation (5). On a Bethe lattice, the number of points at a given
distance d scales as zd , with z the branching ratio. This indicates a close link between the tree
and hyperlattice structures, related to the underlying manifold with negative curvature.

3. The free energy of the hyperlattice model

Here we study the nearest-neighbour ferromagnetic Ising model (FIM) with Hamiltonian
H = − ∑

〈i,j〉 σiσj , where σ = ±1 and 〈i, j〉 are neighbouring sites on a hyperlattice.
A characterization of a special case, the FIM on the Cayley tree, has already been
reported [17,22,23]. However there exists a temperature scale, Tg, below which large droplets
of flipped spins proliferate from the boundaries, resulting in non-Gaussian magnetization
and glassy behaviour for a macroscopic number of sites. In this paper we investigate such
boundary-induced Griffiths phases for spin models on more general hyperlattices.

The free energy per spin of the FIM on the Cayley tree is analytic for all temperatures;
because of the absence of loops on this pseudo-lattice, it can be obtained from a high-
temperature series expansion and is f (β) = −2 ln [cosh(β)]. The situation could be different
for a general hyperlattice due to the presence of loops. The number of independent cycles nc

of a graph with ns sites and nb of bonds is nc = nb − (ns − 1). For the (3, 7) hyperlattice,
we have nc/ns ∼ (5 − √

5)/2 ≈ 1.381 97, which is even larger than the square lattice value
nc/ns = [2L2 − (L2 − 1)]/L2 ∼ 1. Thus the free energy of the FIM on the hyperlattice
could have a singularity, and its absence/presence must be checked explicitly. In order to do
this, we have measured its internal energy 〈e〉 and specific heat cv = (〈e2〉 − 〈e〉2)/T 2 using
numerical simulations. We have ensured that the equilibrium distribution was properly sampled
by comparing the numerical estimate of d〈e〉/dT and (〈e2〉 − 〈e〉2)/T 2 and have used both
heat-bath and cluster algorithms [28], with perfect agreement. The temperature dependence of
the specific heat is shown in figure 2 for an increasing number of layers n = 8, 11, 12. All these
curves display a maximum around the same temperature, but these peaks do not increase with
the system size (the number of sites is increased by 50 between eight and 12 layers whereas the
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Figure 2. Specific heat for a (3, 7) hyperlattice computed from the numerical derivative of the
internal energy and from the fluctuation of energy. The agreement indicates that thermal equilibrium
is properly sampled. The results presented are obtained with eight, 11 and 12 layers. The number of
sites is 4264 (eight generations), 76 616 (11 generations) and 200 593 (12 generations). The number
of bonds is 10 150 (eight generations), 182 490 (11 generations) and 477 799 (12 generations). No
sign of divergence is found when the system size is increased.

specific heat remains identical up to the statistical noise); thus we interpret this maximum as a
Schottky anomaly rather as a signature of a sharp phase transition in the thermodynamic limit.
The free energy of the FIM on the hyperlattice thus appears to be analytic at all temperatures,
similar to the situation for the special case of the Cayley tree. We note that here we are always
considering the case of open boundaries.

4. The Bethe–Peierls transition of the central spin

In order to characterize the behaviour of the FIM on a hyperlattice, we begin by considering
the ordering of its central spin, that residing on the site deepest in the lattice (e.g. the site T0

in figure 3). As a point of reference, we review the special case of the Cayley tree where the
central spin is known to undergo a mean-field Bethe–Peierls transition [29–33]. In response to
an applied uniform field on the entire tree, its central spin develops the local susceptibility χ tree

0

T χ tree
0 =

∑
l

exp

(
− dl

ξT

)
=

+∞∑
n=0

(z − 1)n exp

(
− n

ξT

)
. (8)

Here we use the subscript ‘0’ in χ tree
0 to emphasize that we are only considering the behaviour

of the central spin. In equation (8), dl is the distance between the central site T0 and the site
l; ξT = −1/ ln (tanh (βJ )) is the correlation length set by the exponential decay of the spin
correlations 〈σkσl〉 ∼ exp (−dk,l/ξT), identical to that of the Ising chain because of the absence
of loops. The central spin susceptibilityχ tree

0 diverges ifT < TBP, with (z−1) tanh (βBPJ ) = 1.
We emphasize that this transition results from the metric of the embedding curved space, which
leads to the prefactor (z−1)n in equation (8); this is the number of sites at generation n from the
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Figure 3. A tree with four generations and a forward-branching z− 1 = 2. We denote by T0 . . . Tn
the vertices along a path from the top site to a leaf site. The sites descendent from a given vertex Tm
are grouped together as shown on the figure to calculate the generalized Bethe–Peierls susceptibility
in section 5.

central spin. Thus, thanks to this prefactor, exponentially decaying correlations are sufficient
to generate mean-field ordering of the central spin. As an aside, we note that here we have only
considered χ tree

0 , but this calculation can be generalized to characterize the full thermodynamic
behaviour associated with this spin [32, 34].

For the FIM on the general hyperlattice with loops, the expression for the local
susceptibility is also dominated by the long-length-scale contribution of the spin–spin
correlations, leading to a diverging susceptibility with a finite correlation length [27].
Equation (8) may be adapted to evaluate the central-spin susceptibility using a continuous-
space description

T χ lob(0) =
∫

|z|<R

g(z) exp

(
−d(z, 0)

ξT

)
d2z (9)

where g(z) is the metric in equation (1), and d(z, 0) is the distance between the origin and
the site at z = ρ exp (iθ) (see equation (2)). We have implicitly identified the distance on
the graph and the ‘hyperbolic’ distance given by the metrics. In fact, for a given distance on
the graph, there is a Gaussian distribution of hyperbolic distances, which has been studied in
detail for a Cayley tree model by Comtet et al [21]. We claim that the physics of the FIM is
not sensitive to the existing difference between the two distances. The resulting susceptibility

T χ lob(0) = 2π
∫ R

0

(
1 + ρ

1 − ρ

)−1/(2ξT) ρ

(1 − ρ2)2
dρ ∼ 1

T − TBP

diverges when ξT = 1/2, with the mean-field exponent γ = 1. In fact, all the critical exponents
of the Bethe–Peierls transition are mean field. This can be seen in the following manner: on
d-dimensional Euclidean lattices, the upper critical dimension of spin models is related to the
probability of intersecting random walks [35]. On hyperlattices (including the special case
of trees), the return probability of a random walk is vanishingly small [36–39], indicating
that FIM hyperlattice models are above their upper critical dimension, and thus mean-field
transitions are expected.
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5. Generalized Bethe–Peierls transitions

We would like to consider a possible Bethe–Peierls transition for an arbitrary spin of the FIM
on a general hyperlattice. Again, we begin by studying the special case of loopless Cayley
trees. Here we consider spin ordering on an arbitrary site Tm at generation m = 0, . . . , n (see
figure 3). We group the sites, indicated in figure 3, to expand the susceptibility in powers of
x = tanh (βJ ) (for details see appendix A) to obtain

T χ tree
m = 1 − [(z − 1)x]n−m+1

1 − (z − 1)x
+ x

1 − xm

1 − x

+
(z − 2)x2

1 − (z − 1)x

[
1 − xm

1 − x
− [(z − 1)x]n−m+1 1 − [(z − 1)x2]m

1 − (z − 1)x2

]
. (10)

In the limit n,m → +∞ and n − m constant (boundary behaviour), χ tree
m (T ) is smooth at

the Bethe–Peierls transition temperature ((z − 1) tanh (βBPJ ) = 1), but diverges at a lower
temperature T ′ corresponding to (z− 1) tanh2 (β ′J ) = 1. As shown explicitly in appendix A,
the existence of this transition results from a combination of the local metric (i.e. the number of
sites a distance from the reference one) and exponential spin correlations. In the limit n → +∞
and m fixed (bulk behaviour), χ tree

m in equation (10) diverges at the Bethe–Peierls temperature
TBP with mean-field behaviour. If n → +∞ and m = λn, with λ kept fixed, the susceptibility
in equation (10) shows a divergence at the Bethe–Peierls temperature. The temperature T ′ has
already been found by several authors by studying the magnetic field dependence of the Potts
model on the Cayley tree [40, 41]. Here, we provide another interpretation for this transition,
in terms of a local Bethe–Peierls transition controlled by the metric properties at the boundary,
and prove that this transition is related to a Griffiths phase.

We have therefore demonstrated the existence of two distinct Bethe–Peierls transitions
associated with the bulk (where n − m → +∞), and the boundary, related to the different
metric properties associated with these two different site species. They also affect percolation
thresholds on these trees, as discussed in appendix B.

Now that we have understood the bulk and boundary transitions of the tree FIM in terms of
metric properties, we continue to ask a similar question about their more general hyperlattice
analogues. We stress that, on these manifolds of negative curvature, site scaling is different
for reference sites in the bulk and on the boundary. As displayed in equation (7), the number
of sites at a distance d from a given bulk reference one scales as Lbulk ∼ (π/2) exp (2d) in
the continuous-space model. In appendix C we show that the analogous quantity associated
with a boundary reference site scales as Lbound ∼ exp (d). This result is compatible with our
numerical determination of the site scaling at a given distance, as displayed in figure 4.

The expression for the local susceptibility involves a correlation length, which is not nec-
essarily uniform for the full lattice. We assume a uniform, isotropic correlation length as an
ansatz and then deduce the existence of bulk and boundary transitions for the general hyperlat-
tice set by ξT = 1/2 (see section 4) and by ξT = 1. The existence of two different transitions
does not rely on the initial ansatz because the correlation length at the boundary can only be
reduced compared to that of the bulk. Therefore, the initial ansatz of uniform correlations
indicates the existence of a boundary transition at a temperature lower than the bulk transition.

We support the previous analysis, assuming a uniform spin correlation length, with
numerical determinations of the spin–spin correlations. On the Cayley tree, the correlation
of two spins σ and σ ′ at a distance d is [tanh (βd)]d , irrespective of the site locations of the
two reference spins. By contrast, as discussed below, the situation is different for the general
hyperlattice case where the correlations are reduced at the boundary. We distinguish between
spin correlations in the bulk and at the boundary.
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Figure 4. Logarithm of the number of sites of the (3, 7) hyperlattice with 14 generations as
a function of distance k from a given site located (i) at the centre of the hyperlattice (diamonds)
where the calculated exponential growth is indicated by a dashed line, (ii) on the boundary (crosses)
with calculated exponential growth (short dashed line) that is the square root of the calculated bulk
growth (dashed line) and (iii) on an intermediate (7) generation (boxes), where a crossover is
observed between bulk and boundary behaviour with increasing distance scales.

Bulk. The symmetry group of the (3, 7) hyperlattice with a finite number of layers n is
generated by one rotation of angle 2π/7 around the central spin, and one inversion with respect
to an axis going through the central spin. The infinite hyperlattice has a huge symmetry group:
the lattice is left invariant under the aforementioned set of symmetries around any lattice site,
a fact that is no longer true for a finite system. However the properties of the finite-size lattice
reflect the huge symmetry of the infinite lattice. To be more precise, let us consider a FIM on
a hyperlattice with n layers and Nk correlations 〈σ0σk〉 between a given spin σ0, and any of the
Nk spins at a distance k from σ0. Let us first take σ0 to be the central spin. Strictly speaking, the
number of such different correlations isNk/7 because of the 2π/7 rotation symmetry. However
we find strong evidence that, for k fixed and n large, all the 〈σ0σk〉 correlations nearly coincide.
On the lower, negative x-axis of figure 5, we have chosen k = 2 and increased n; the effect of
the site alternation with coordination 3 and 4 is clearly visible (see the boundary in figure 1).
The correlation inhomogeneities are reduced with increased system size (cf the negative x-axis
part of figures 5 and 6).

Boundary behaviour. Now we consider the reference spin σ0 to be located at the
hyperlattice boundary and the spins σk at a distance k from σ0. The dispersion is similar to
that already described for the bulk case, though it persists in the large-n limit (see the positive
x-axis part in figure 6). The sites with smaller coordination are less correlated, as expected on
physical grounds. Therefore the correlations are weakened at the boundary of the hyperlattice.
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Figure 5. Spin–spin correlations at T = 1 for the central (negative x-axis) and a boundary spin
(positive x-axis) at a distance k = 2 where x is an arbitrary spin index.

6. Magnetization distributions at low temperatures

We now demonstrate slow dynamics at low temperatures in this hyperlattice FIM. Towards
this goal, we track the energy and magnetization distributions, comparing results obtained
using two sampling methods. The first is a standard heat bath single-spin-flip algorithm that
probes configuration space where two configurations are considered neighbours if they differ
by exactly one spin. The second one is a cluster algorithm that can go from any configuration
to any other in just one step, and is applicable here because of the absence of frustration. We
use these two algorithms to probe the structure of the configuration space, analogous to similar
studies performed previously on Cayley trees [17, 22]. In both cases, the valleys correspond
to magnetic domains in real space (see figure 7). On the hyperlattice, the energy of a magnetic
domain scales as the logarithm of its area (see appendix D) while it does not scale with area
on the tree.

In figure 8, we present three energy distributions. One was acquired with a cluster
algorithm, while the other two were obtained with the single-spin-flip algorithm and 3 × 105

and 4.78 × 105 MCS spins. The three simulations were performed at a temperature T = 1.4,
below the estimated Bethe–Peierls transition (of the order of the lattice coordination). These
three energy distributions are close to the same Gaussian distribution, centred at the mean
value of the internal energy, with a width proportional to the specific heat multiplied by the
square of the temperature. From this figure it is clear that there are no long timescales present
as far as the energy is concerned.

However, the behaviour of the magnetization is rather different. In figure 9 we present
three magnetization distributions, determined during the same runs as the internal energy
distributions. The three magnetization distributions are distinctive. The two distributions
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Figure 7. Magnetic domains (a) on the tree, and (b) on the hyperlattice. The geodesic 1–3–2
is perpendicular to the border of the hyperlattice R exp (iφ). Point 1 is R exp (iθ). Point 2 is
R exp (−iθ).

obtained using the single-spin-flip algorithm are bimodal whereas the distribution obtained
with a cluster algorithm is unimodal. For other runs, with fewer statistics, the magnetization
distribution with the single-spin-flip algorithm was found to be multimodal, with three or more
maxima. This suggests the existence of energy barriers which trap the system with single-spin
dynamics. These simulations provide evidence that the low-temperature dynamics are slow.
The glass crossover temperature corresponds to the correlation length being comparable to the
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Figure 8. Energy distribution computed at T = 1.4 using single-spin-flip cluster algorithms
where ‘long simulation’ and ‘short simulation’ curves correspond to 47 800 and 300 000 MCS/spins
respectively; the ‘cluster algorithm’ curve was obtained with 10 200 updates of the cluster algorithm.

system size. Also the magnetization distributions are broad at low temperature (see figure 9)
for the hyperlattice, similar to that found for the Cayley tree [17]; this is an indication of
relaxation on many timescales. This is because of the stability of a Griffiths phase on the entire
lattice, at a temperature set by the boundary Bethe–Peierls transition (see appendix E).

7. Discussion

In summary, we have studied the nearest-neighbour FIM on tilings embedded in hyperbolic
surfaces with negative curvature, often beginning with the special case of Cayley trees. We
have identified two mean-field transitions in these systems, associated with ordering of the bulk
and the boundary spins as a function of decreasing temperature. These two transitions can
be understood in terms of the local metric properties of the lattice, specifically by the distinct
scaling of sites with distance from the boundary and bulk spins. We believe that these two
transitions will be characteristic of any short-range ferromagnetic model residing on a planar
surface with globally negative curvature independent of lattice specifics or the nature of the
spin order parameter.

In order to satisfy the criterion of ‘global negative curvature’, at large length scales the
resident lattice should be embedded on a surface with a negative (not necessarily constant)
curvature instead of on a Euclidean plane. For instance, we could imagine models with a
fluctuating metric. As a simple example, we could consider a recursive random lattice in
which the sites have a coordination z with a given probability P(z). The sites with z = 2 have
the local environment of an Ising chain, and the sites with z � 3 have local branching. The
bulk Bethe–Peierls transition is found to be 〈〈z− 1〉〉 tanh (βbulkJ ) = 1, whereas the boundary
transition corresponds to

√〈〈z − 1〉〉 tanh (βboundJ ) = 1. Both transitions occur at a finite
temperature as soon as 〈〈z〉〉 > 2, in which case the metric is globally hyperbolic.
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Figure 9. Magnetization distribution computed at T = 1.4 using single-spin-flip and cluster
algorithms where ‘long simulation’ and ‘short simulation’ curves correspond to 47 800 and 300 000
MCS/spins respectively; the ‘cluster algorithm’ curve was obtained with 10 200 updates of the
cluster algorithm. The left peak occurs for the longer simulation.

One can also question how the hyperbolic/Euclidean transition would operate in a
continuous model in the limit of a large curvature radius R � 1. Such lattices would be
obtained as tesselations of negative curvature surfaces, in the limit where the lattice spacing is
far below the curvature radius. These lattices could not be constructed using a single type of
regular polygon like the ones considered here. The bulk and boundary Bethe–Peierls transitions
would be of order 1/R while Euclidean physics would develop below the length scale R.
Strictly speaking, the Euclidean phase transition occurs only when R = +∞. However,
when the correlation length is smaller than the curvature radius, the system behaves like a
Euclidean system. Therefore, in the presence of a small curvature, pronounced maxima are
expected in the susceptibility. The expected behaviour is summarized in figure 10. Again
we emphasize that we expect this phase behaviour for ferromagnetic models residing on
hyperboloids independent of the details of the spin order parameter. For Cayley trees, it
has been shown that the nearest-neighbour xy model displays similar physics (i.e. mean-field
transition) to its Ising counterpart [17]. For a general hyperlattice, we expect two mean-field
transitions for short-range xy models since there exist loops and two species of spin (boundary
and bulk), as in the Ising case. As was done in this paper, these transitions would be obtained
by comparing the exponential decay of the correlations to the growth in the number of sites
with distance; this would be interesting to verify.

The physics of the low-temperature behaviour of the hyperlattice FIM is determined by
the formation of droplet-like excitations nucleating from the boundary. These rare fluctuations
do not affect the specific heat (section 3), but do lead to a broad magnetization distribution
reflecting a wide spectrum of relaxation timescales. Such Griffiths phases are usually associated
with dilute ferromagnets with spatial inhomogeneity. In the models we have studied here there
is no intrinsic disorder; however, there are two distinct site species, a feature that contributes
to favouring droplet formation. Indeed here we report a diverging susceptibility per site at the
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Figure 10. (Curvature, temperature) phase diagram. Tc is the critical temperature of the Euclidean
model. The dashed curve is a cross-over between the Euclidean and non-Euclidean model, occurring
only with a small curvature radius (the corresponding lattices are not regular hyperlattices like those
studied here). Region (I) is the paramagnet. Region (II) corresponds to algebraic correlations below
the curvature radius R, and exponential correlations above R. The solid curves are the bulk and
boundary Bethe–Peierls transitions, determined as ξT = R and 2R respectively. Note that ξT
is related to the exponential decay of the correlations above the curvature radius, and not to the
behaviour of the correlations below the curvature radius. Region (IV) corresponds to the Griffiths
phase of the entire lattice.

boundary transition (see appendix E), a characteristic shared with random ferromagnets with
correlated disorder4. Similarly divergences are reported for quantum disordered magnets,
where the randomness is correlated in the time dimension. To our knowledge, this is the
first time a Griffiths phase has been identified in a regular magnetic system with loops;
furthermore the identification of slow dynamics in a short-range system at low temperatures
is very encouraging. For instance the behaviour of the magnetization distribution in figure 9
is reminiscent of the broad overlap distribution in spin glasses [42]. The relaxation time is
however finite, a feature reminiscent of glass dynamics. Similarly to slow relaxation in dilute
magnets [18], the short-time dynamics may violate the fluctuation dissipation theorem [43]
while the long-time dynamics is likely to be an equilibrium dynamics.

Though motivated by experiment, our chosen lattices of study are somewhat removed from
the structures commonly observed in nature. However perhaps we can close by attempting to
reconnect with experiment. In particular, we have identified Griffiths phases in ferromagnetic
models residing on hyperlattices. Though this phenomenon has been discussed extensively
in the theoretical literature, it has not yet been conclusively identified in the laboratory5. For
example, there have been claims in random-field materials [44], but they remain controversial
due to plausible alternative interpretations of the data [45]. Perhaps Josephson junction arrays
fabricated in a hyperlattice topology would provide a promising setting for the observation of

4 RM thanks P Pujol for a discussion on this point.
5 PC thanks J A Mydosh for discussions of experimental attempts at observing Griffiths phases.
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this well discussed phenomenon. In this artificial network, a junction is located at each link of
the hyperlattice; the short superconducting wires have a phase φi with a Hamiltonian

H = EJ

∑
〈i,j〉

[1 − cos (φi − φj )]

where the ground-state configurations correspond to a uniform φi = 0 and EJ is an energy
scale associated with a junction. If this array were placed in a time-dependent transverse
magnetic field, the low-frequency part of the resulting ac susceptibility [46] should provide a
useful probe for the slow dynamics associated with the Griffiths phase.

In order for our ideas to be applicable to the Josephson hyperlattice, they should not
display a vortex binding–unbinding transition. Assuming that the nature of the spin order
parameter is not important, we can apply some of our previous expressions to check this. The
phase at a distance d from a given bulk vortex scales as φbulk(l) ∼ 4 exp (−2l), where we
have used the expression equation (7) for the number of sites at a given distance l. The energy
of a junction a distance d from a bulk node 1

2EJ [φ(d)]2, leading to the total vortex energy
Ebulk = 2πEJ . It is remarkable that this quantity is finite, while it diverges logarithmically
with distance on the square lattice. Similarly, the energy of a vortex at the boundary is found to
be Ebound = 2π2EJ , again a finite quantity. As a consequence, on the hyperlattice, there is no
Kosterlitz–Thouless transition associated with the unbinding of vortex–antivortex pairs. We
note that an identical conclusion was reached for two-dimensional Coulomb systems residing
on a surface of constant negative curvature [47]; this agreement gives us further confidence in
our conjecture about the universal nature of the phase behaviour that we have identified.
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Appendix A. Number of sites at a given distance on the tree

We consider a site at generation m on a tree and calculate the number of sites Nm(l) at a given
distance l from the site at generation m. This is given by the prefactor of the term xl in the
expansion of the susceptibility in powers of x = tanh (βJ ):

T χ tree
BP (m) = 1 − [(z − 1)x]n−m+1

1 − (z − 1)x
+

m−1∑
k=0

xm−k[1 + (z − 2)x

+(z − 2)(z − 1)x2 + · · · + (z − 2)(z − 1)n−k−1xn−k]. (A.1)

Equation (10) has been obtained by summing the series in equation (A.1). First the sum∑n−m
l=0 [(z − 1)z]l gives rise to (z − 1)l sites at a distance 0 � l � n − m. Next, the sum∑m−1
k=0 xm−k results in one site at a distance 1 � l � m. The remaining terms give rise to

(z−2)(z−1)l−m+k−1 sites at a distance l, with 0 � k � m−1 and m−k+1 � l � n+m−2k.
We therefore need to distinguish between two cases: case (1) m � [(n − 1)/2] and case
(2) m � [(n − 1)/2], with [· · ·] the integer part.

Case 1: m � [(n− 1)/2]. We should compare l with n−m and m + 1. We find three cases:

(i) l � n − m. The number of sites at distance l is (z − 1)l − 1.
(ii) n − m � l � m + 1. The number of sites at distance l is (z − 1)[(n−m+l)/2] − 1.

(iii) m + 1 � l. The number of sites at distance l is (z − 1)[(n−m+l)/2] − (z − 1)l−m−1.
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Case 2: m � [(n − 1)/2]. We compare again l with n − m and m + 1:

(i) l � m + 1. The number of sites at distance l is (z − 1)l − 1.
(ii) m + 1 � l � n − m. The number of sites at distance l is (z − 1)l − (z − 1)l−m−1.

(iii) n − m � l. The number of sites at distance l is (z − 1)[(n−m+l)/2] − (z − 1)l−m−1.

Therefore at large distance the number of sites at a distance l from a given site at generation
m scales as Nm(l) ∼ (z − 1)l/2 if m � [(n − 1)/2]. This scaling should be compared with
the exponential decay of the correlations 〈σiσj 〉 ∼ exp (−di,j /ξT) and leads to a boundary
transition at a temperatureT ′ given by (z−1) tanh2 (β ′J ) = 1. This transition occurs whenever
n − m is finite in the limit n → +∞.

Appendix B. Percolation on the tree: generalized Bethe–Peierls limit

We would like to illustrate the different behaviour of the generalized Bethe–Peierls transitions
on the example of bond percolation where the same phenomenon occurs as in the case of
ferromagnetism. We denote by P BP

n (M) the probability of finding M sites (a mass M) in the
cluster containing the top site of a tree with n generations. We have

Pn+1(M) =
∑
θ1

· · ·
∑
θz−1

∑
M1

· · ·
∑
Mz−1

z−1∏
i=1

Pn(Mi)

z−1∏
i=1

p(θi)δ

(
M−

z−1∑
i=1

θiMi − 1

)

with θi = 1 with a probability p(1) = µ and θi = 0 with a probability p(0) = 1 − µ. The
average number of sites in the cluster containing the top spin of a tree with n generations is
iterated as M̃m+1 = (z − 1)µM̃n + 1. The fixed point value is M̃∗ = 1/(1 − (z − 1)µ) and
diverges at the bulk percolation threshold µ0

P = 1/(z − 1).
We now consider the number of sites M(Tm) in a cluster containing the point Tm in the

presence of n generations (see figure 3). We find

M(Tm) = [(z − 1)µ]n−m+1 − 1

(z − 1)µ − 1

+
(z − 2)µ2

(z − 1)µ − 1

(
[(z − 1)µ]n−m+1 [(z − 1)µ2]m − 1

(z − 1)µ2 − 1
− 1 − µm

1 − µ

)
(B.1)

of the same form as equation (10). If n,m → +∞ with n − m constant, the cluster size
containing the vertex Tm does not diverge at the bulk percolation threshold µ0

P while it diverges
at a larger percolation threshold µ′

P = 1/
√
z − 1. If n → +∞ and n−m grows faster than n,

we find a percolation transition at the bulk percolation threshold µ0
P. Therefore, similarly to

ferromagnetism, percolation shows a different behaviour depending on how the Bethe–Peierls
limit is taken. The boundary percolation threshold µ′

P is larger than the bulk percolation
threshold µ0

P.

Appendix C. Number of sites at a given distance from a boundary site on the
hyperlattice

We consider a finite-size disc |z| < R with the hyperbolic metrics equation (1), and calculate
the length of the set of points at a distance d from the boundary site at coordinate R. This set
of points is represented by the circle x0 + R0 exp (iφ) (see equation (4)), which intersects the
boundary |z| = R at the points z± = x0 + iR0 exp (±iφ0), with

cosφ0 = tanh d

2R(1 − tanh2 d)
(1 + (−3 + tanh2 d)R2 + (tanh2 d)R4).



690 J C Anglès d’Auriac et al

O 3

2

1

x x

y y

2’

1’

3’=0

(a) (b)

Unit circle

Figure D.1. Isometry transform of the droplet excitation of the hyperlattice. (a) The original
droplet, and (b) the transformed droplet. The isometry is chosen such that the segment 1′–3′–2′ is
on the y axis with 3′ at the origin. Point 1 is R exp (iθ); point 2 is R exp (−iθ). Point 1′ is iρ; point
2′ is −iρ.

A straightforward calculation leads to the length of the arc z+–z−:

Lbound =
∫ √

g(z)R0 dφ = 4 tanh d

1 − tanh2 d
tan−1




√
2R − (1 + R2) tanh d

2R + (1 + R2) tanh d


.

In the relevant regime 1 � d � tanh−1 R with R � 1, we find Lbound ∼ exp (d). This
boundary behaviour should be contrasted with the bulk behaviour Lbulk ∼ (π/2) exp (2d) (see
equation (7)).

Appendix D. The length of magnetic domains

We show that the length of the droplet excitations shown in figure 7(b) is proportional to the
logarithm of its area. The difference from the calculation in appendix C is that we consider here
the geodesics 1–3–2 corresponding to the physical situation where the energy of the domain
wall is minimized.

To calculate the shaded area in figures 7(b) and D.1(a), we use the transformation
z → z′ = (az + b)/(bz + a) with a and b real numbers, to map the domain in figures D.1(a)
and 7(b) into the domain on figure D.1(b). Imposing point 1 to be transformed into 1′ at
coordinate iρ leads to

α ≡ b

a
= − R cos θ(1 + ρ2)

1 + ρ2R2 + 2ρR sin θ

with

ρ = 1

2R sin θ
(−(1 − R2) + ((1 − R2)2 + 4R2 sin2 θ)1/2).
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The area element is found to be

dA = g(r ′) dr ′ dθ ′ = r

2(1 − r2)

(1 + α2)r + (r2 + 1)α cos θ

1 + α2r2 + 2αr cos θ
dθ.

A straightforward integration over θ leads to

A = θ

2

(
1 + R2

1 − R2

)
+
α2R2 − 1

|1 − αR| tan−1

(∣∣∣∣1 − αR

1 + αR

∣∣∣∣ tan

(
θ

2

))
.

When R � 1, we have A ∼ θ/[2(1 − R)]. The length of the line 1–3–2 is L =
1
2 ln [(1 + ρ)/(1 − ρ)] ∼ − 1

2 ln (1 − R). The scaling between the area and length of a magnetic
domain in the limit R → 1 is finally found to be A ∼ θ

2 exp (2L): the area is exponentially
large in the boundary length.

Appendix E. Total susceptibility: Griffiths transition

We derive the total susceptibility of the tree and hyperlattice models. The susceptibility of
both models diverges below the Griffiths temperature set by the local transition temperature
of the boundary.

E.1. Tree model

The susceptibility of the entire lattice χTOT is obtained as the sum of the local susceptibilities:
χTOT = ∑n

m=0(z − 1)mχm(T ). First if T > T ′, the susceptibility per spin behaves like
χTOT/Nn ∼ (1 + x)2/[1 − (z− 1)x2], and diverges at the temperature T ′. Now if T < T ′, the
susceptibility per spin behaves like χTOT/Nn ∼ [(z − 1)x2]n, an infinite quantity in the limit
n → +∞.

E.2. Hyperlattice model

We first estimate the local susceptibility of the hyperlattice with a finite size |z| < R at the point
represented by a real number x, and we assume the correlations to be uniform as discussed in
section 5 of the main body of the text. We note d = d(x, R) = tanh−1 [(R − x)/(1 − xR)] the
distance between the points x andR, andD = tanh−1 [(R + x)/(1 + xR)] the distance between
the points x and −R. Based on figure 4 and appendix C, we approximate the growth of the
number of sites N (l) at a distance l from the point x as follows: (i) l < d (bulk behaviour),
N (l) � (π/2) exp (2l); (ii) d < l < D (boundary behaviour), N (l) � (π/2) exp (l + d). The
local susceptibility is found to be

T χ(x) �
∫ D

0
N (l) exp (−l/ξT) dl

= π

2

1

2 − 1/ξT
[e(2− 1

ξT
)d − 1] +

π

2

1

1 − 1/ξT
ed [e(1− 1

ξT
)D − e(1− 1

ξT
)d ]. (E.1)

In the case of the central spin x = 0, we find a susceptibility diverging at ξT = 1/2. In the
case of a boundary site x = R, we find a susceptibility diverging at ξT = 1, consistent with
the behaviours obtained in the main text of this paper. The total susceptibility is obtained as
the sum of the local susceptibilities, equation (E.1):

χTOT =
∫ R

0
2πxg(x)χ(x) dx. (E.2)

We note R = 1 − εR , and expand the susceptibility equation (E.2) in the parameter εR � 1.
The number of sites Ns scales as ε−1

R . If ξT < 1, the susceptibility per site is found not to scale
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with Ns. If ξT > 1, the susceptibility per site is found to scale as ε−1+1/ξ
R , an infinite quantity

in the limit εR → 0.
Therefore, the tree and hyperlattice models show the same behaviour: the susceptibility

per site is infinite below the Griffiths transition temperature T ′. The Griffiths temperature T ′ is
equal to the temperature of the boundary Bethe–Peierls transition. Physically, this originates
because of the finite fraction of spins at the boundary: the boundary dominates the behaviour
of the total susceptibility.
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